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Introduction Primary Productivity
The oceans have absorbed approximately 30% of the * Chl a concentration and gross primary production decreased with increasing CO, concentration
anthropogenic CO, released to the atmosphere, of which (Fig. 1a-b).
approximately 40% has been absorbed by the Southern e Chl a-specific primary productivity decreased with high CO, (Fig. 1c).
Ocean'?. Marine microbes (phytoplankton, protozoa and R
bacteria) are critical drivers of the biological pump and d o b =t c
the cycling of carbon in the ocean3. Despite their % g A
importance, little is known of the effects of increased CO, § 2 | f oCO,
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Figure 1. a) Chlorophyll a abundance, b) gross primary productivity, and c) Chl a-specific primary productivity in all CO,
treatments. Results for incubation period shown (days 8-18).

| § * Elevated pCO, affected photophysiology by decreasing;
1 B | * photosynthetic rate (P, ) (Fig. 2a),

Methods  maximum photosynthetic efficiency (a) (Fig. 2b),
* photoinhibition rate (B) (not shown).

Minicosms

e pCoO, did not affect saturating irradiance (E,) (Fig. 2c).
e Six 650 L minicosm tanks were filled with a natural e’ 5 (EJ) (Fig. 2¢)

community of Antarctic marine microbes from near-
shore waters off Davis Station, Antarctica.

* Each tank was acclimated to CO, concentrations
between ambient (343 ppm) and 1641 ppm over 5
days at low light.
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* Light was increased to saturating intensity between
days 5 and 7.

e Tanks were incubated until the nutrients were
exhausted (day 18). B I e

 Samples were obtained every two days.

Figure 2. a) Maximum photosynthetic rate (P,.,), b) maximum photosynthetic efficiency (a), and c) saturating irradiance
(E,) of phytoplankton in all CO, treatments. Results for incubation period shown only (days 8-18).

Bacterial Productivity

* Bacterial abundance was commonly higher in high CO, treatments (Fig. 3a).

* Bacterial cell abundance declined through increased bacterivory, however it did not abate the
exponential increase in the rate of cell-specific bacterial productivity (Fig. 3b).

* Gross bacterial production differed little amongst CO, treatments (except at 600 ppm) (Fig. 3c).

Primary & Bacterial Productivity * Rates of productivity were highest at 600 ppm CO.,.
* Primary productivity was measured through the uptake | a gy b - | C
of *C-bicarbonate® over 21 light intensities. £, = oo
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Performance quwd Chromatography ' Figure 3. a) Bacterial abundance, b) cell-specific bacterial productivity, and c) gross bacterial productivity in all CO,
* Bacterial counts were determined by flow cytometry’. treatments. Results for incubation period shown only (days 8-18).
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voP s=P vy * Bacteria appear to tolerate high CO, conditions.
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