Spatial variation of total alkalinity and total inorganic dissolved carbon along the Brazilian continental shelf-break and slope (10) CO₂ n Mariah C. Borges¹, <u>Iole B. M. Orselli¹</u>, Rodrigo Kerr¹ ## CO₂ net fluxes along south and southeast Brazilian continental shelf and slope Ana G. Correa¹, Iole B. M. Orselli¹, Rodrigo Kerr¹ ¹Laboratório de Estudos dos Oceanos e Clima, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Av. Itália km 8, Rio Grande, RS, Brazil. <u>E-mail: iole.orselli@furg.br</u> ### Background **FURG** - Rapid increase of CO₂ in the atmosphere is affecting the global climate (absorption of CO₂ by the ocean). - Continental margins play an important role in biogeochemical cycles. - Lack of long-term measurements of carbonate system parameters along Brazilian continental shelf and slope. #### Methods - Early spring 2014. - Seawater samples in entire water column (Figure 1). - CO_2 molar fraction (xCO_2) continuous measurements (GO-8050 / LiCOR LI-7000). **Figure 1:** Study region. Position of hydrographic stations devloped durring EstARte-Sul cruise. Bathymetry in colour scale. - Temperature and Salinity CTD SBE 9plus. - Total alkalinity (A_T) and total dissolved inorganic carbon (C_T) potentiometric titration in a closed cell (Dickson, 2007). - •CO₂ partial pressure (pCO₂) was calculated using continuous xCO₂, T and S. - •CO₂ net fluxes was determined using wind speed from ECMWF reanalysis project based on Takahashi *et al.* (2009) transfer coefficient (FT09). #### References - •Bollmann et al., 2010. World Ocean Review 2010- Living With the Oceans. - •Cai, 2003. The role of marsh-dominated heterotrophic continental margins in transport of CO2between the atmosphere, the land-sea interface and the ocean. Geophysical ResearchLetters. - •Dickson et al. (2007). Guide to best practices for ocean acidification research and data reporting. - •Kerr et al. (2015). The Western South Atlantic Ocean in a High– CO_2 World: Current Measurement Capabilities and Perspectives. Environmental Management. - •Pierrot et al. (2009). Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines. Deep-Sea Research. - •Takahashi et al.,2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Research. # This study contains the co BRAZILIAN OCEAN ACIDIFICATION RESEARCH GROUP Grupo Brasileiro de Pesquisa em Acidificação dos Oceanos ### **Findings** It was possible to identify six water masses in the water column (Figure 2). A_T values ranged between 2248 and 2470 μ mol kg⁻¹ (Figure 2a). C_T values ranged between 1980 and 2444 μ mol kg⁻¹ (Figure 2b). Figure 2: (a) θ /S-A_T and (b) θ /S-C_T diagrams. Water masses are indicated by coloured polygons and their acronyms are: Plata Plume Water, Subtropical Shelf Water, Tropical Water, South Atlantic Central Water, Antartic Intermediate Water, and North Atlantic Deep Water. FCO₂ average value was -87.9 \pm 41.8 μ mol m⁻² d⁻¹. A senescent bloom of *Trichodesmium spp* was observed, resulting in high pCO₂sw values achieving 873 μ atm (Δ CO₂ of 476 μ atm), being one of the three regions along the slope where CO₂ was released to the atmosphere (Figure 3). **Figure 3:** Surface results. (a) ΔpCO_2 (μatm) cruise data. Colour indicates atmospheric pCO_2 (μatm). (b) FT09 ($\mu mol\ m^{-2}\ d^{-1}$). Colour indicates temperature (°C). (c) FT09 ($\mu mol\ m^{-2}\ d^{-1}$) along cruise, without considering two peaks of emission. #### Conclusion A qualitative comparison with available database shows higher values of A_T and C_T for these data, reinforcing the need for more sampling efforts. Furthermore, in the spring of 2014, the continental shelf was shown as a CO₂ sink, and biological effect was considered the main factor to characterize this behaviour.