Spatial variation of total alkalinity and total inorganic dissolved carbon along the Brazilian continental shelf-break and slope

(10) CO₂ n

Mariah C. Borges¹, <u>Iole B. M. Orselli¹</u>, Rodrigo Kerr¹

CO₂ net fluxes along south and southeast Brazilian continental shelf and slope

Ana G. Correa¹, Iole B. M. Orselli¹, Rodrigo Kerr¹

¹Laboratório de Estudos dos Oceanos e Clima, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Av. Itália km 8, Rio Grande, RS, Brazil. <u>E-mail: iole.orselli@furg.br</u>

Background

FURG

- Rapid increase of CO₂ in the atmosphere is affecting the global climate (absorption of CO₂ by the ocean).
- Continental margins play an important role in biogeochemical cycles.
- Lack of long-term measurements of carbonate system parameters along Brazilian continental shelf and slope.

Methods

- Early spring 2014.
- Seawater samples in entire water column (Figure 1).
- CO_2 molar fraction (xCO_2) continuous measurements (GO-8050 / LiCOR LI-7000).

Figure 1: Study region. Position of hydrographic stations devloped durring EstARte-Sul cruise. Bathymetry in colour scale.

- Temperature and Salinity CTD SBE 9plus.
- Total alkalinity (A_T) and total dissolved inorganic carbon (C_T) potentiometric titration in a closed cell (Dickson, 2007).
- •CO₂ partial pressure (pCO₂) was calculated using continuous xCO₂, T and S.
- •CO₂ net fluxes was determined using wind speed from ECMWF reanalysis project based on Takahashi *et al.* (2009) transfer coefficient (FT09).

References

- •Bollmann et al., 2010. World Ocean Review 2010- Living With the Oceans.
- •Cai, 2003. The role of marsh-dominated heterotrophic continental margins in transport of CO2between the atmosphere, the land-sea interface and the ocean. Geophysical ResearchLetters.
- •Dickson et al. (2007). Guide to best practices for ocean acidification research and data reporting.
- •Kerr et al. (2015). The Western South Atlantic Ocean in a High– CO_2 World: Current Measurement Capabilities and Perspectives. Environmental Management.
- •Pierrot et al. (2009). Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines. Deep-Sea Research.
- •Takahashi et al.,2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Research.

This study contains the study co

BRAZILIAN OCEAN ACIDIFICATION RESEARCH GROUP
Grupo Brasileiro de Pesquisa em Acidificação dos Oceanos

Findings

It was possible to identify six water masses in the water column (Figure 2). A_T values ranged between 2248 and 2470 μ mol kg⁻¹ (Figure 2a). C_T values ranged between 1980 and 2444 μ mol kg⁻¹ (Figure 2b).

Figure 2: (a) θ /S-A_T and (b) θ /S-C_T diagrams. Water masses are indicated by coloured polygons and their acronyms are: Plata Plume Water, Subtropical Shelf Water, Tropical Water, South Atlantic Central Water, Antartic Intermediate Water, and North Atlantic Deep Water.

FCO₂ average value was -87.9 \pm 41.8 μ mol m⁻² d⁻¹.

A senescent bloom of *Trichodesmium spp* was observed, resulting in high pCO₂sw values achieving 873 μ atm (Δ CO₂ of 476 μ atm), being one of the three regions along the slope where CO₂ was released to the atmosphere (Figure 3).

Figure 3: Surface results. (a) ΔpCO_2 (μatm) cruise data. Colour indicates atmospheric pCO_2 (μatm). (b) FT09 ($\mu mol\ m^{-2}\ d^{-1}$). Colour indicates temperature (°C). (c) FT09 ($\mu mol\ m^{-2}\ d^{-1}$) along cruise, without considering two peaks of emission.

Conclusion

A qualitative comparison with available database shows higher values of A_T and C_T for these data, reinforcing the need for more sampling efforts.

Furthermore, in the spring of 2014, the continental shelf was shown as a CO₂ sink, and biological effect was considered the main factor to characterize this behaviour.