Constraining net calcification/dissolution in the open ocean using high precision ID measurement of dissolved Ca/Mg ratios in seawater

Ellen Cliff, Stephen Eggins, Les Kinsley, Linda McMorrow

Research School of Earth Sciences

The Australian National University, Canberra, ACT 2601, Australia

(Ellen Cliff) u5194105@anu.edu.au

Motivations and aims

The measurement of Ca anomaly (Δ Ca) provides an unambiguous method for constraining CaCO₃ production, export and dissolution in the ocean cf. excess alkalinity (Alk*) which is subject to organic matter formation and remineralisation¹. Δ Ca could prove to be a valuable tool as seawater carbonate chemistry changes.

$$Ca^{2+} + 2HCO_3^- \rightleftharpoons CaCO_3 + H_2O + CO_2 \qquad ... \Delta Alk = 2, \Delta Ca = 1$$

The *challenge* is to develop a high precision and high throughput method for measuring Δ Ca in seawater that could match the resolution of Alk* results and exceed the precision of existing Ca titration techniques².

The aim of this study is to develop methods for analysis of Ca and Mg abundances in seawater with sufficiently high precision that Δ Ca can be determined and corrected for fresh water fluxes by ratio of Ca abundance to Mg abundance.

Analytical Methodology

Overview of isotope dilution Multi-Collector Inductively Coupled Plasma Mass Spectrometry approach:

- Isotope dilution: accurate weighing of isotope enriched spike and seawater samples
- MC-ICPMS: matrix-matching of sample and bracketing standard
- MC-ICPMS: minimize both memory effects and blank variation on instrument drift
- MC-ICPMS: Improve [Ca] reproducibility to 0.1-0.2 %

Application to the Southern Ocean

Aims: Track CaCO₃ formation and dissolution in the Southern Ocean south of Tasmania, particularly along isopycnal surfaces - is any shallow depth dissolution occurring?

Test Great Calcite Belt hypothesis – is significant calcification occurring? Study location: SR3 WOCE line – samples analysed to date are from the AU0806 cruise in the austral autumn (March-April) 2008

Sample locations along the 140°E-150°E SR3 line are shown along with the potential density anomaly, and Upper Circumpolar Deep Water (UCDW), Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW)³.

Preliminary results

 Δ Ca (µmol/kg) is calculated relative UCDW source water, shown below.

$$\Delta Ca = \left(\frac{Ca}{Mg} - \frac{Ca}{Mg}\right) \times [Ca]_{UCDW} \times \frac{S}{S_{UCDW}}$$

Isopycnals (pale grey) and aragonite saturation state $(\Omega=1)$ (dark grey) contours are shown. Negative ΔCa values developed in SAMW reflect calcification relative to source UCDW. Elevated values near $\Omega_{arag}=1$ may reflect aragonite dissolution at this depth.

Alk* from data provided by Bronte Tilbrook (CSIRO).

Conclusions

The method developed to date shows significant promise and requires further refinement, particularly of [Ca] measurements, to achieve a precision for Δ Ca of 0.2‰.

Acknowledgements: Andy Bowie (UTas), Michael Ellwood (ANU) and Bronte Tilbrook (CSIRO) for providing samples and data.

References

[1] Anderson and Sarmiento, 1994, Global Biogeochem. Cycles, 8, 65-80. [2] Olson and Chen, 1982, Limnol. Oceanogr., 27, 375-380. [3] Solokov and Rintoul, 2002, J. Marine Syst., 37, 151-184.