

Integrated impacts of temperature increase and ocean acidification on larval shell development in the American Lobster, *Homarus americanus*

Christine San Antonio ¹, Michael Tlusty ², Robyn Hannigan ¹

¹ University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125

² New England Aquarium, 1 Central Wharf, Boston, MA 02110

Introduction

- The American lobster fishery is an important component of the coastal New England economy and community with a dockside value of over \$560 million in 2014.3
- ➤ Lobster shell is composed of layers of chitin fiber interspersed with CaCO₃ crystals.^{1, 7}
- ➤ Previous research on the American lobster has focused on single stressor (pH) lab experiments to determine the effects on calcification, growth, and survival rates.^{2, 5}

Figure 1. Stage II larval American lobster photographed under stereomicroscope.

Larval American lobsters have four stages of molts before becoming a benthic juvenile; this is a naturally stressful time in their life cycle.

Objectives

We have three primary objectives:

- 1. Examine the synergistic effects of elevated temperatures and decreased pH on larval shell development in the American lobster, *Homarus americanus*.
- 2. Assess if and how the results from objective #1 correlate with susceptibility to epizootic shell disease.
- 3. Conduct an initial pilot study to test the integrity of our system, experimental conditions, and methods for analysis. The pilot was also intended to preliminarily test our first hypothesis.

Hypotheses:

Under conditions of decreased pH and increased temperature, we expect to see:

- 1. Decreased shell growth and changes in CaCO₃ mineral composition and abundance.
- 2. Increased susceptibility to disease and effects on survival.
- 3. Downregulation of genes involved in shell biomineralization.

The preliminary results of a 10 day pilot study are presented here.

Methods

> Larval lobsters reared at the New England Aquarium (Fig 2), transported by cooler to UMB.

Figure 2. Left: Larval lobsters at the New England Aquarium; right: juvenile lobster in holding cup.

- Four pH/Temp pilot treatments of: 8.1/16C, 8.1/24C, 7.6/16C, 7.6/24C.
- Experiment run on a unique pH-stat CO₂ dosing system that continuously logs data and allows for true independent replicates (Fig 3).8

Methods (cont'd)

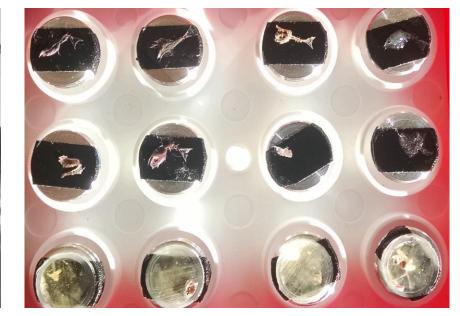
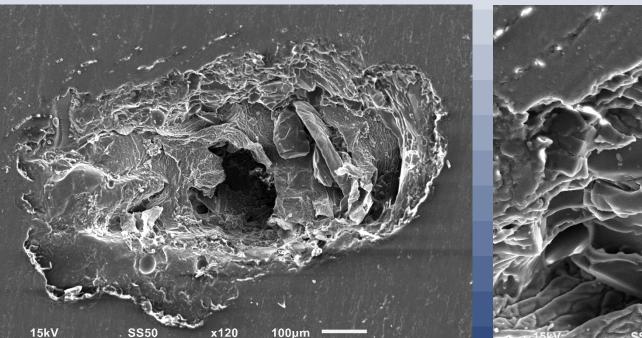


Figure 3. Top: System electronics including solenoids (control pCO₂ dosing), SL1 modules (log water quality data), temp probes, pH electrodes, and tubing for ambient air and CO₂; **bottom:** individual tanks showing structural set up for holding larvae.

- ightharpoonup Salinity, temperature and total alkalinity were measured daily; DIC, pCO₂ and Ω_{Ar} were modeled using the CO₂SYS excel macro.⁴
- Larvae that survived the 10 days were euthanized using tricaine mesylate (MS-222) (Fig 4).

Figure 4. Left: Larval lobsters being euthanized in MS-222; **right:** selection of SEM stubs, bottom row are cross sections in Crystal Bond_™ adhesive (Electron Microscopy Sciences).

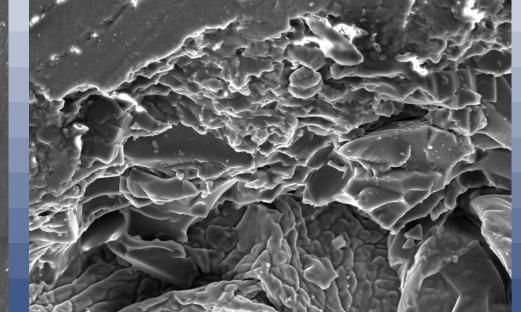
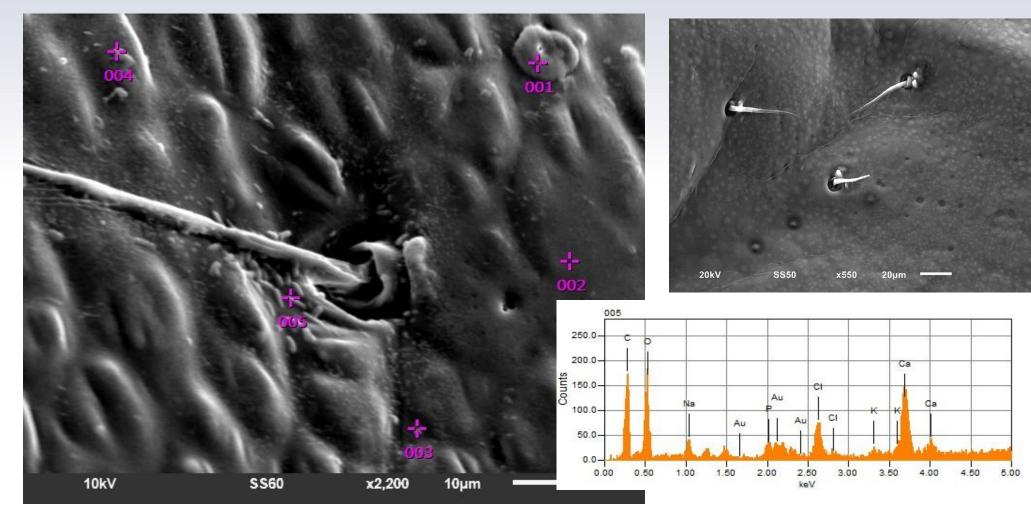

- ➤ Using scanning electron microscopy, we examined the outer epicuticle of select larvae from treatments to determine if CaCO₃ crystals and bacteria could be detected.
- ➤ One larva from each pilot treatment was embedded in Crystal Bond_{TM} adhesive and sectioned using an IsoMet[®] low speed saw to test the method for creating a quality cross section for SEM (Fig 4).

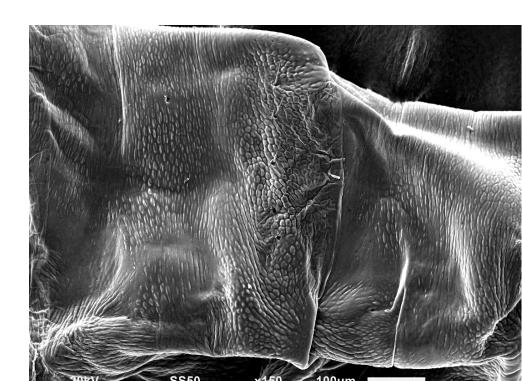
Pilot Results

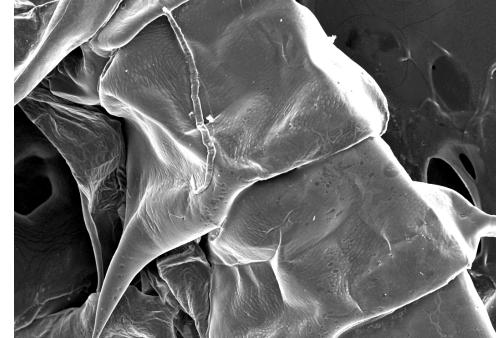
рН	Temp (C)	Alk (µmol/kg)	Sal (ppt)	DIC (µmol/kg)	pCO2 (µatm)	Ω_{Ar}
7.60 (0.05)	23.39 (0.37)	3055.00	34.83	2949.23	1675.33	1.83
7.80 (0.06)	15.87 (0.14)	2804.43	33.70	2669.40	911.90	1.89
7.85 (0.07)	23.46 (0.21)	2960.52	34.25	2737.86	862.08	2.92
7.60 (0.04)	15.14 (1.50)	2898.51	32.92	2849.48	1561.57	1.22

Table 1. Carbonate chemistry collected from each treatment continuously over the 10 period. Shows mean of variables (±SD where applicable) and CO2SYS data output.

- All larvae (but one) grown in the 24C treatments died prior to pilot completion.
- Procedure using IsoMet® low speed saw to get a cross section of did not produce clear images under SEM (Fig 5).


Figure 5. Cross section at different magnifications under SEM.


Pilot Results (cont'd)

- ➤ CaCO₃ crystals of sufficient size and abundance were not consistently seen on larval epicuticle under SEM (Fig 6).
- ➤ Outer epicuticle of the larva grown under 7.6/24C was more textured than the larva from control (8.1/16C) treatment (Fig 7).

Figure 6. EDS analysis near a setal pit with a sample elemental composition output; **top right:** setal pits on control larva, EDS results were not consistent across larvae.

Figure 7. Epicuticle of the abdomen showing texture; left is larva from 7.6/24C, right is control larva 8.1/16C.

Discussion

Results of the pilot study were not sufficient for doing statistical analyses or to quantifiably show support for our first hypothesis.

Pilot Study Lessons Learned and Next Steps:

- > Adjust highest temperature for treatments.
- Develop alternative method for taking a cross section of fragile larval shell – resin?
- Cross sections are likely key to seeing and quantifying CaCO₃ crystals.
- > Determine if differences in epicuticle texture translates to low pH and high temperature.
- Complete full experiment to test for connection between OA/temp and susceptibility to epizootic shell disease.

Acknowledgements

Robert Holmberg MIT Sea Grant Program The New England Aquarium UMB Environmental Analytical Facility (EAF) Hannigan lab group

References

[1] Davies, C. E. et al. (2014). A comparison of the structure of American (Homarus americanus) and European (Homarus gammarus) lobster cuticle with particular reference to shell disease susceptibility. Journal of Invertebrate Pathology, 117, 33-41.
 [2] Keppel, E.A. et al. (2012). Ocean acidification decreases growth and development in

American lobster (*Homarus americanus*) larvae. *J. Northw. Atl. Fish. Sci, 44:* 61-66. [3] National Marine Fisheries Service. (2015). Fisheries of the United States, 2014. U.S. Department of Commerce, NOAA Current Fishery Statistics No. 2014.

Department of Commerce, NOAA Current Fishery Statistics No. 2014.
[4] Pierrot, D., Lewis, E., and Wallace, D. (2006). Program developed for CO2 system calculations: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.

[5] Ries, J. B., Cohen, A. L., & McCorkle, D. C. (2009). Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. *Geology*, 37(12), 1131-1134.
 [6] Scarratt, D.J. (1973). Abundance, survival and vertical diurnal distribution of lobster larvae in Northumberland Strait, 1962-63, and their relationships with commercial stocks. J

[7] Stirn, A. (2012). The formula for lobster shell. *Max-Planck Research: Materials and Technology Bionanocomposites*, 77.

of Fisheries Research Board of Canada. 30.12: 1819-1824.

[8] Wilcox Freeburg, E. D. (2014). Exploring the link between otolith growth and function along the biological continuum in the context of ocean acidification.