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Abstract.

Impacts of warmer ocean temperatures and increased pCO, on
marine organisms are modulated by an organism’s energetics: while
higher temperatures increase metabolic rates, acidification increases
the amount of energy needed for calcification, and consequently the
amount of energetic resources required.

Turbo undulatus (Turbinidae) and Austrocochlea odontis
(Trochidae), temperate herbivorous gastropods, were exposed to
crossed combinations of temperature (21°C vs. 24°C) and pCO,
(400ppm vs. 1000ppm). Thermal performance curves (TPCs),
metabolic rates, and growth rates were quantified after eight weeks
exposure.

Depending on the species, warming and OA acted either additively
or antagonistically, reducing physiological performance in some but
increasing it 1in others
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Turbo undulatus Austrocochlea odontis

What can thermal performance curves (TPCs) tell us?
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From one gastropod to another: extended exposure to ocean acidification
and warming reveals species-specific shifts in thermal performance curves
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Question.
How does extended exposure to elevated temperature and pCO2

impact a species’ thermal performance and growth?

Results and Conclusions.

Thermal Performance Growth response
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Growth Results:
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relative vulnerability or
resilience of different
species to warming and T, = Temperature of optimal
ocean acidification (Schulte, performance

20135; Stoffels et al, 2015).

45 minute trial-period
at designated temperature
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HTxOA - 24C, 1000ppm

* T. undulatus — HT and HTxOA had positive effects on growth
* OA did not have a strong effect

* A. odontis — HT and OA had negative effects on growth
* Antagonistic interaction between temperature and CO,

TPC Results:

CT, .. = Critical thermal maximum

e T. undulatus —
HT, OA, and HTxOA treatments: fNO, consumption and ANT
* A. odontis — HT treatment: NO, consumption and @Topt

opt

OA treatments: WO, consumption and AT
HT x OA treatmentsWO, and @Topt

opt

Discussion:

I | 5/treatment
4 treatments
20 total

* Each species has a unique response to elevated temperature, [CO,],
and the interaction of the two stressors

* Temperature 1s a more immediate threat to growth rate in 7.
undulatus than ocean acidification

* Regardless of metabolic rate changes across treatments, individuals
reached CT, . at the same temperature (7. undulatus 39°C; A.

max

odontis 43 ° C), indicating a possible species-specific temperature
threshold
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